
Inductive Biases in a Reinforcement Learner

Helen G. Cobb
Naval Research Laboratory, Code 5514

Navy Center for Applied Research in Artificial Intelligence
4555 Overlook Ave., S.W., Washington, D.C. 20375-5320

HTfr
; ELECT'-'
! MAYI2 1995

Abstract

Reinforcement Learning Methods (RLMs) typ-
ically select candidate solutions stochastically
based on a credibility space of hypotheses
which the RLM maintains, either implicitly or
explicitly. RLMs typically have both inductive
and deductive aspects: they inductively
improve their credibility space on a stage-by
stage basis; they deductively select an appro-
priate response to incoming stimuli using their
credibility space. In this sense, RLMs share
some learning attributes in common with
active, incremental concept learners. Unlike

i some concept learners that employ determinis-
i tic procedures for selecting hypotheses, how-

- i ever, the evaluations of hypotheses provided to
% - RLMs are often uncertain, either due to noisy
'■: | environments, or due to summary evaluations
::! [which occur after a sequence of learner-envi-
:: [ronment interactions. This paper examines
>>; | issues of inductive learning bias in this context
l\ | experimentally. Specifically, the paper
1}! addresses inductive learning biases in the con-
B ! text of a simple RLM called a Collective
§ | Learning Automaton (CLA). The CLA learns

1 the shortest path through a small network. The
I research points out some of the difficulties of
) finding performance measures that indicate the

strongest, correct biases for the automaton.

1 INTRODUCTION

Over the past few years, there has been a growing interest
in the effects of bias in learning algorithms. In inductive
concept learning, Mitchell considers bias to be the
expressed preference of the learner for considering one
hypothesis of a classification rule (or a generalization rule)

over another (Mitchell, 1980). Mitchell points out that "an
unbiased learning system's ability to classify new
instances is no better man if it simply stored all the train-
ing instances and performed a table lookup when asked to
classify a subsequent instance" (Mitchell, 1980, pp. 1).
Bias, as defined in this sense, is necessary for any induc-
tive learning algorithm.
Within concept learning algorithms there are two funda-
mental types of bias: language bias and procedural bias
(Utgoff, 1986; Rendell, 1986; Gordon, 1990).2 Language
biases are preferences which determine the expression of
hypotheses of the target concept. Procedural biases are
preferences which affect the traversing of the search space.
Procedural biases also include halting rules. Both lan-
guage biases and procedural biases can affect a learning
algorithm's speed for finding a classification rule that is
close to the target concept. The language bias reduces the
size of the search space by constraining the number of pos-
sible formulations of the hypothesis; the procedural bias
reduces the amount of traversal through the search space
by constraining the search method.

Closely associated with notion of inductive bias are the
notions of strength and correctness (Utgoff, 1986). To
date, the definition of strength refers more to language bias
than procedural bias. The strength of a language bias cor-
responds to the entire size of the hypothesis space that the
learner can generate given no constraining procedural bias
(e.g., exhaustive search with labeled instances). The
strength of the language bias can be increased either by
reducing the size of the representational space or by trans-
forming the grammar to one that is less expressive. Not all
hypotheses that may be generated from a language
description may be acceptable hypotheses of the target
concept, however. Language biases that permit the forma-

1 Procedural bias is also called algorithmic bias.
2 The biases within the problem space may be different from those within
the algorithm. For example, instances examined by the learner may be
expressed in a language which is much richer than the learner's language.

19950510 099

tion of hypotheses that do describe the target concept are
called correct biases.
In a general sense, procedural bias constrains the breadth,
the direction, and the duration of the search for the classifi-
cation rule. A strong procedural bias minimizes this trajec-
tory through the search space. An incorrect procedural
bias over-constrains or under-constrains this search so that
learner cannot find a correct classification rule. A powerful
concept learner is one that uses as strong a bias as possi-
ble, for both its language and procedural biases, without
sacrificing correctness.

Since many learning algorithms have an inductive compo-
nent, the analysis of learning in terms of language and pro-
cedural bias applies broadly to many algorithms other than
traditional concept learners. For example, a large number
of active incremental learners, which are generally not
considered to be traditional concept learners employ what
is referred to as Reinforcement Learning Methods
(RLMs) (Whitehead and Ballard, 1990). RLMs have an
inductive component in that they constantly revise the
credibilities of their hypotheses based on experience.
These learners then deduce a response from an input stim-
ulus based on their current hypothesis or set of hypotheses.
RLMs are often used to learn first-order decision
sequences in dynamical systems. Such algorithms include
genetic algorithm-based systems (Holland, 1975, De Jong,
1975) such as Grefenstette's SAMUEL (Grefenstette,
1988), Artificial Neural Networks (ANNs) (Rumelhart,
1986) such as those consisting of Widrow's ADALINE
units (Widrow, 1985), and Q-Learners (Watkins, 1989).
This paper, in particular, examines a simple example of a
RLM called a Collective Learning Automaton (CLA)
(Bock 1992).
Viewing RLMs as having both inductive and deductive
components is supported by other researchers, including
those studying learning automata (Narendra and Thatha-
char, 1989) and those working in information theoretics as
applied to inductive and deductive inference (e.g., see
Watanabe, 1960). Furthermore, these researchers believe
that both forms of inference are necessary for learning:
"Inductive and deductive inference do not contradict but
merely complement each other and both are found to be
essential for learning processes" (Narendra and Thatha-
char, 1989, pp. 15). Watanabe states: "Inductive inference
contains, as a necessary ingredient, a constant comparison
of the deductive consequence from a hypothesis with the
experiment. Accordingly, the model theory of inductive
inference must permit deductive inference to play a corre-
sponding role within its framework" (Watanabe, 1960, pp.
208).

3 In the PAC learning framework (Valiant, 1984), hypotheses describe
the target concept within limits of accuracy specified as part of the proce-
dural bias).

A RLM is similar to an active incremental concept learner
that is inferring a single concept. The purpose of the con-
cept learner is to find a final hypothesis sufficiently close
to the target hypothesis that covers the positive instances
the learner has observed. The purpose of a typical RLM is
to seek one solution (or a few) to a decision sequence
problem. In the latter case, the final hypothesis covers only
a small fraction of the possible sequences. If the space
being covered is very small and the instances being
received only have the label of "positive" or "negative,"
then any inference procedure, deductive or inductive,
would probably do no better than random search. Instead,
RLMs usually receive evaluations which measure, in a
sense, the "degree of positiveness," (or better, the "degree
of credibility") of an entire solution (or trial hypothesis)
which can be thought of as a group of instances. A simple
analogous problem for a concept learner would be to gen-
erate the set of positive instances covered by its current
hypothesis for evaluation. A summary score might indi-
cate the actual fraction of positive instances in the set. A
difference between the concept learner and the RLM in
this case is that the RLM examines a sequential relation-
ship among the decisions it generates whereas the concept
learner applies a "same member of type of relationship.

In the RLM, each individual decision is not directly evalu-
ated as "good" or "bad." The problem for the RLM then
becomes one of inferring what makes up the constituent
parts of the best solution (decisions in the final hypothesis)
from summary evaluations of trial hypotheses, rather than
trying to infer a final hypothesis through the direct evalua-
tion of constituent members which are labelled as "posi-
tive" or "negative" instances. This inference problem of
finding out the constituent parts of the best solution is
commonly referred to as the credit assignment problem.

There are basically two approaches for studying biases in
learning systems. One approach is to maintain a set of
biases while the learner performs a task, and then before
attempting the task again, search for a better set based on
the learner's overall performance. The other approach is to
dynamically adjust a set of biases during the learning task
based on intermediate evaluations of performance. This
paper calls the first approach inherited bias (or fixed
bias). The second approach is referred to in the literature
as dynamic bias adjustment (or shift of bias) (Gordon,
1990; Rendell, 1987; Schlimmer, 1987; Utgoff, 1982,
1986). Both of these approaches have biological analogs, ■>
For example, the range of frequencies that a creature can;
hear is usually a genetically determined trait that does not
improve due to learning over the creature's life-span. Not ification
all characteristics fit this category, however. A creature __
having a fairly long life-span must be able to dynamically
adjust its initial biases in order to adapt itself to changing
circumstances. For example, biases appropriate to one
stage of development, may be inappropriate at another. So

■■; ror

CRA&I;
TAB

<i:nceä

ibution/

Biases in Inductive Learning Workshop, ML-92, July 4, 1992

we can think of the dynamic shifting of bias as analogous
to bias changes that occur during various stages of individ-
ual development.
Since of the primary objective of this research is to exam-
ine the effects of learning biases, and their interactions, on
the performance of a RLM, this study focuses on examin-
ing the effects of inherited biases. Being able to compare
the effect of making one biasing assumption over another
is possible when the combination of selected biases
remains constant over a learning task. Using dynamic bias
adjustment involves additional issues. One major issue
that needs to be addressed is how to modify the state of the
learner so that it can continue to learn with a new set of
biases. This issue is complicated by the fact that most
RLMs do not maintain an episodic memory of their expe-
riences, whereas many concept learners save instance
information so that biases can be adjusted retroactively, if
necessary, using backtracking. There are so many ways of
implementing dynamic bias adjustment that discovering
the best method for a RLM is a study unto itself.

There are several questions of interest in studying inher-
ited biases in RLMs, assuming that a learning task repre-
sents the life-span of the RLM. For example, what are
characteristic language and procedural biases in the RLM?
If we decompose the problem into two subsystems, one
subsystem for modeling the learner, and the other sub-
system for selecting the inherited biases, how should the
two subsystems be designed? What performance mea-
sure(s) should be sent from the learning subsystem to the
bias search subsystem which assigns a the learner it's
inherited biases? Are there any interactions between the
procedural and representational biases? This work repre-
sents some preliminary results in studying combinations of
biases in a simple RLM without examining the bias search
subsystem.
The next section provides background information, intro-
ducing terminology that frames the question of inductive
biases in the context of RLMs. This section also discusses
a way of viewing the strength of a bias in empirical terms
as information compression. Section 3 gives a quick over-
view of the CLA; Section 4 describes the particular short-
est path problem being examined, including an outline of
the experimental design; Section 5 presents the experi-
mental results, and Section 6 gives a brief conclusion.

INDUCTIVE BIASES

2.1 MEASURING BIAS STRENGTH

The definition of strength of a language bias given at the
beginning of the introduction permits us to perform some
analytic evaluation of the limiting performance of a con-

cept learner. However, if we automate the search for the
strongest, correct bias we would like to find some perfor-
mance measures which would empirically allow us to
evaluate biasing assumptions. This is especially true if we
consider the problem of choosing a good procedural bias.

In RLMs, it is sometimes useful to examine a component
of language bias called representational bias (Gordon,
1990; Rendell, 1987; Schlimmer, 1987; Utgoff, 1982,
1986; Mitchell, 1980). Representational bias defines the
choice of atoms or primitives in the hypothesis langua-
ge. Very often, the grammar for expressing hypotheses is
defined in the paradigm of the RLM. For example, a RLM
may always generates a decision sequence, or trial hypoth-
esis, having a specified format. A trial hypothesis is gener-
ated from the RLM's memory. This memory could be
expressed as a linear expression, a set of productions, or
perhaps a state transition table. The choice of terms used
in the RLM's memory represents a representational bias
within the learner. If we examine a problem in which the
best representational bias is known, then we can investi-
gate which performance measures can be used to measure
a strong, correct representational bias.

A major procedural bias within RLMs is the amount of
change made to the memory at each stage of learning. Sev-
eral authors (e.g., Sutton, 1989) call this factor the learning
rate.4 The best setting of this factor cannot usually be
determined from the problem definition. However, by
examining various levels of this factor in conjunction with
different representations, we can test the effect of this bias
on selected performance measures.

2.2 INDUCTIVE COMPRESSION

Generally speaking, inductive learners compress informa-
tion. Watanabe points out that there are several steps
involved in the information compression (Watanabe,
1971). Using different terms than Watanabe's, we can con-
sider the choice of representation of the language as the
first compression step, the grammar of the language as the
next compression step, and finally, the inductive compres-
sion specified by the procedure as the third compression
step.

Representation -> Grammar -> Inductive Procedure

Watanabe also points out that there are several ways to
arrive at the same final level of compression. For example,
all the burden can be placed on initially compressing infor-
mation into a single concept class, in which case a gram-
mar is not needed. In this case, all of the effort is applied to
finding the best representation for the problem. Alterna-

4 This term learning rate is not used in this paper because many factors
actually affect the rate of learning.

Biases in Inductive Learning Workshop, ML-92, July 4,1992

tively, very little compression can be used in developing
primitives, in which case more burden is placed on devel-
oping a grammar and applying an inductive inference pro-
cess. In this second case, the resulting classification rule
may be more complex (e.g., more terms) than the case
where more effort is expended in finding a good represen-
tation. Watanabe speculates that the most desirable situa-
tion is to have a "well-balanced distribution of information
compression over different steps" (Watanabe, 1971, pp.
567).

22.1 Language Bias

Notice that the first two steps correspond to defining a lan-
guage bias. When we select a language bias, we are in
effect compressing information. Unless the language bias
is chosen either arbitrarily or from the experience of the
designer of the learning algorithm, a number of steps are
required to compress raw data into a language specifica-
tion. We can define the strength of a language bias in terms
of the amount information compression that occurs over
these steps. However, most analyses of algorithms do not
consider the cost of this phase; that is, an initial language
bias is often assumed analytically to be a "given." Thus,
assuming that we can perform compression instanta-
neously, then we can define the strength of a language bias
as follows: If a language bias, A, performs more informa-
tion compression over the same set of data than a lan-
guage bias, B, then A is a stronger language bias than B.

This definition is an operational extension of the original
definition of strength of a language bias which refers to the
size of the hypothesis space. Given the same raw data, a
language specification A, results in a smaller hypothesis
space than some other language specification B, if and
only if the language A performs more information com-
pression of the raw data than language B. It follows that
the bias of A is stronger than the bias of B.

Notice that the strength of a bias is relative to the original
data. Suppose that we start with two different sets of raw
data, set A, and set B which is an elaboration of set A, and
we arrive at the exact same language specification, L (i.e.,
LA = LB) for both sets. The strengths of the language
biases are not the same even though the sizes of the
hypotheses spaces are. The second specification com-
presses more information relative to the original data set
B.

Also notice that this definition ignores the notion of cor-
rectness, which requires some target concept or problem
definition. For example, when we compress the raw data
sets A and B to the same language (as in the last example),
the compression for B may be greater, but the compression
may also be incorrect (i.e., too strong).

2.2.2 Procedural Bias

To date, little attention has been directed toward the defini-
tion of the strength of a procedural bias. We extend the
definition of language bias to define the strength of a pro-
cedural bias. Since inference procedures usually occur
over several steps, we can define the strength of a proce-
dural bias in terms of its rate of information compression:
If a procedural bias A takes a fewer number of stages to
perform the same amount of compression as procedural
bias B, then procedural bias A is stronger than procedural
bias B. Alternatively: If a procedural bias A compresses
more information in the same number of steps as proce-
dural bias B, then procedural bias A is stronger than pro-
cedural bias B.

Procedural bias essentially differs from language bias in
that shifting a language bias usually implies uniform
changes throughout the learning process. For example,
dropping a term from the language must be done in all
hypotheses and all logic leading to those hypotheses.
Changes in procedural bias are done in the context of effi-
ciently finding a concept description or a problem solution
given some language bias constraint.

2.3 A RLM'S CREDIBILITY SPACE

A concept learner that receives labelled instances from a
generator can, in principle, maintain a version space
(Mitchell, 1977) of hypotheses that are consistent with all
of the instances seen so far. For example, Mitchell main-
tains in his Candidate Elimination Algorithm a maximally
specific set and a maximally general set of hypotheses so
that not all hypotheses need to be considered explicitly. As
learning progresses, the version space becomes smaller.
Haussler points out that one of the problems with Mitch-
ell's approach is that the storage space for this set of
hypotheses can still increase exponentially in size. Haus-
siert analysis shows that it is not necessary for a concept
learner to maintain an explicit version space at all (Haus-
sler, 1987). By examining a sufficient number of instances,
the learner can develop a hypothesis that becomes e-close
to the target concept with some large probability 1-5.

One of the important assumptions behind Haussler's anal-
ysis, however, is that the learner can reject a hypothesis
because all of the instances are typically labelled as posi-
tive or negative with certainty. If the learner develops a
hypothesis that is consistent with all instances seen and it
turns out that instance information is occasionally incor-
rect due to mislabelling, then the resulting classification
rule may effectively over-fit the instance data to include
noise (Spears and Gordon, 1992). In a learning situation
where an instance is only labelled as to how probable an
example it is of the target concept (i.e., a probabilistic

Biases in Inductive Learning Workshop, ML-92, July 4,1992

learner), maintaining a version space of consistent hypoth-
eses in some deterministic sense loses its meaning.

In RLMs, a version space instead consists of a single prob-
abilistic hypothesis that covers the space of all possible
hypotheses. Equivalently, we can consider the version
space to be set of all hypotheses, with each hypothesis
given a value indicating its degree of its credibility relative
to other hypotheses. Let us call this probabilistic version
space a credibility space,5 and for convenience, let us call
the degree of certainty of a hypothesis its credibility
value. Credibility values may be decision weights, rule
strengths, or transition probabilities, depending upon the
RLM.
In concept learners, a hypothesis induces a dichotomy of
the instance space (Haussler, 1988). Haussler defines the
growth function as the maximum number of dichotomies
that can be induced in a hypothesis space for a finite num-
ber of instances. He then shows that because the growth
function can be related to the number of instances required
to e-exhaust a version space, it can be used as a measure of
bias strength in a probabilistic sense (Haussler, 1988, pp.
191). The analogy to the dichotomies of instances in con-
cept learning is the number of inputs and outputs available
to a RLM over a decision sequence. Even though this
information does give us a bound on the size of the
hypothesis space, unfortunately, it does not give us a direct
bound the amount of testing required. Because RLMs
often use non-binary evaluations, a RLM must consider a
trial hypothesis repeatedly to gain confidence in its credi-
bility. It is very unlikely that the RLM can reduce the cred-
ibility space by testing a hypothesis once; however, testing
does allow the RLM to reshape the credibility values so
that retesting of poor hypotheses is minimized.

2.4 INFORMATION COMPRESSION AND
ENTROPY

After each stage of the search, a RLM adjusts its credibil-
ity values to reflect the outcome of its experience. Depend-
ing on the policies employed by the RLM, these values are
increased or decreased so that future decisions should pro-
vide better overall evaluations. The update policy gener-
ally indicates the rate of change in the credibility values
(i.e., amount of change per stage). Depending on this rate,
the credibility space of the hypotheses becomes organized
more or less quickly.

A measure of the amount of compression per stage is the
change in the entropy. We can compute the entropy at a

stage using Shannon's entropy measure (Shannon, 1948,
pp. 393)

Hslaee = -KjdPt\og(pi), (Eqnl)

where K is a positive constant, and N is the current size of
the credibility space at the current stage. Let us assume for
convenience that K is 1.
According to Watanabe: "Inductive inference is a process
such that the distribution of weights (credibilities)
becomes increasingly concentrated on a decreasing num-
ber of cases (hypotheses) no matter how widely one dis-
tributes the weights initially" (Watanabe, 1960, pp. 210).
Watanabe calls this observed decrease in the entropy the
inverse H-theorem (Watanabe, 1960,1975).

The principle of decreasing entropy applies to concept
learners. Suppose that we start with a hypothesis space
having cardinality \H\ and there is an equal probability of
considering each of the hypotheses. If we can eliminate
hypotheses due to having certain instance information, and
of there is an equal probability of inspecting the remaining
hypotheses, then the entropy in the version space after
eliminating all but N hypotheses is

// = -£(l/A01og(l/A0 (Eqn2)
« = i

This term simply reduces to -logN. The quantity in (Eqn
2) can be interpreted as the "amount of ignorance" of not
knowing which of the N hypotheses is correct (Watanabe,
561, pp. 562). When N = 1, the uncertainty reduces to
zero.
In concept learners, the probabilities are not actually the
same for the hypotheses. Some hypotheses are given more
weight than others depending on the procedural biases.
Because many procedural biases only implicitly generate a
distribution over hypotheses in the version space, comput-
ing entropy for these cases becomes a challenge. In a RLM
such as a CLA, it is possible to calculate entropy since
transition probabilities can be used to compute the credi-
bility values of trial hypotheses. These credibility values
can be used as probabilities in (Eqn 1).

COLLECTIVE LEARNING
AUTOMATON (CLA)

5 Both Rendell (Rendell, 1986) and Watanabe (Watanabe, 1960) use sim-
ilar terminology. Rendell defines a credibility function of hypotheses
which assesses the credibility or belief of the various competing hypothe-
ses.

3.1 OVERVIEW

The CLA is an iterative paradigm that refines its hypothe-
ses of the solution at each stage of the search. Within each

Biases in Inductive Learning Workshop, ML-92, July 4,1992

stage, the automaton communicates with the environment
for several interactions. For each interaction, the automa-
ton receives a stimulus input from the environment, selects
a response output, collects the stimulus-response pair into
a history, and then transmits the output to the environment.
This interaction cycle repeats until the automaton gener-
ates a sequence of stimulus-response interactions called a
collection. At the end of a stage, the environment trans-
mits an evaluation to the automaton. The automaton is
collective because the evaluation of the decision sequence
does not occur until a collection of stimulus-response pairs
are obtained.6

The CLA maintains a State Transition Matrix (STM).
The STM explicitly provides stimulus-response probabili-
ties by partitioning the stimulus space into a discrete num-
ber of compartments called stimulants and the response
space into a discrete number of compartments called
respondents. The sum of the probabilities across respon-
dents for a given stimulant is one. The automaton applies a
selection function to choose a response to an environmen-
tal stimulus based on the current contents of the STM. To
modify the STM, the automaton first develops a compen-

sation based on an internal transformation of the evalua-
tion; then the automaton's update function changes the
STM probabilities using both the compensation and the
stimulus-response information stored in the history. The
cycle repeats for several stages until some convergence
criterion is met Figure 1 summarizes the steps using high-
lighted pseudocode.

The simplicity of the CLA makes it potentially amenable
to analysis. Because the probabilities of a respondent is
given for each stimulant, it is possible to compute an esti-
mate of the entropy at each stage. This estimate is called
the collection entropy, Hc. To calculate the entropy, the
automaton first computes, on the fly, the product of the
conditional probabilities of selecting responses for all
interactions except for the last. For a collection of length /,
the path probability, ppath is

(-1

Ppath = Y1P" (Eqn3)
m=\

6 Sutton calls problems which restrict reinforcement to occur at the end
of a sequence "time blinded tasks," because the reinforcement time inter-
val is very often unknown (Sutton, 1984).

COLLECTIVE LEARNING AUTOMATON
BEGIN

stage = 0
Initialize STM
WHILE (convergence criteria not met) DO
BEGIN

interaction = 0
Receive stimulus -^-
WHILE (not end of stage) DO
BEGIN

Select response for stimulus
using STM

Collect <stimulus, responso
pair in History

Transmit response

ENVIRONMENT

Receive stimulus ~^-

END
END

interaction = interaction + 1
END
Receive evaluation -M
Form compensation using evaluation
Update STM using History and

Compensation
stage = stage + 1

The automaton then uses this probability in computing Hc

at the final interaction:

Hc = X 0>„«,*Py) l0S fcW*^ ^qn 4)

Some other RLMs, such as neural
networks, implicitly represent the
relationship between stimulants
and respondents by using a linear
expression which maps the
weighted sum of the stimuli into a
response. Based on evaluation
feedback, these learners adjust the
weights within the expression to
modify the associated response.
Still other RLMs use stimulus-
response rules that permit condi-
tion parts of rules to intersect.
This intersection corresponds to
having overlapping stimulants.
Many of these RLMs are interest-
ing paradigms; CLA has the vir-
tue of having a simple automaton
underpinning in which the proba-
bilities of input-output associa-
tions are explicitly enumerated.
The results of this study may be
useful in examining other RLMs.

Transmit response

Receive stimulus
Transmit response

Update Environment
Transmit evaluation

Figure 1: A Standard Collective Learning Automaton

Biases in Inductive Learning Workshop, ML-92, July 4, 1992

3.2 LEARNING BIASES IN THE CLA
Now let us briefly consider examples of biases within the
CLA. A example of a representational bias in the automa-
ton is the definition of the states in the STM (i.e., the stim-
ulants and the respondents). Expressing a hypothesis as a
decision sequence is an example of a grammar bias. Thus,
the language of a trial hypothesis consists of a sequence of
stimulant-respondent ordered pairs. There are several
examples of procedural bias. The formulation of the com-
pensation and update functions reflect inductive proce-
dural biases. Deductive procedural biases are reflected in
the selection function. For example, the automaton may
make each decision based only on current state informa-
tion without looking behind at previous information (i.e.,
the automaton may be first-order). The selection function
governing how the automaton chooses a decision sequence
(i.e., a hypothesis) from the STM may consider all hypoth-
eses or only a subset of hypotheses whose probabilities lie
above a threshold.

EXPERIMENTAL APPROACH

4.1 AN EXAMPLE PROBLEM

For purposes of illustration, let us examine a small shortest
path problem. Figure 2 below summarizes the environ-
ment's complete knowledge of the problem. The stimu-
lants that the automaton can receive are the colors within
the ellipses. The lines shaded in grey show the optimal
path. The respondents are X, Y, and Z; the time of travel
associated with each response is placed in parentheses.

Notice that it is possible for more than one respondent to
lead to the same next stimulant. For example, for the stim-
ulant called VIOLET, all three of the respondents, X, Y,
and Z, lead to the stimulant called RED. The time trav-
elled depends on the actual respondent selected. Also

notice that in this problem, the shortest path in terms of
time is the longest route through the network in terms of
the number of decisions required (i.e., five decisions).

It is interesting to note that there is an inherent hypothesis
procedural bias in the automaton because it selects
responses on a node-by-node basis. Even when the proba-
bilities of selecting different responses are initially the
same at each of the nodes, the probabilities of selecting the
possible action sequences are different. There are more
paths leading to the RED stimulus if the initial response is
X (7 paths) than if the initial response is either Y (2 paths)
or Z (4 paths), so that the paths starting with an X response
are initially explored less than the paths starting with a Y
or Z responses. This bias is compounded if there are near-
optimal solutions in the more easily explored parts of the
search space. In Figure 2 the response sequence Y -> Y ->
Z gives a 6 minute trip that is only one less than the opti-
mal response sequence X -> Y -> X -> Y -> Z giving a 5
minute trip. So despite the small size of the graph, the
problem is not trivial. It is easy for a RLM receiving sum-
mary evaluations to get trapped in a local optimum.

Let us now assume that the automaton does not have
respondents X, Y, and Z available to it; rather, suppose it
has an integer range of responses from 4 to 0. In other
words, the automaton has a language based on integer val-
ues instead of letter symbols. If the automaton uses a parti-
tion consisting of three intervals (e.g., [4, 2] [1] [0]), then
each interval represents an equivalence class where the
range of responses are considered to be the same. For
example, if a respondent is the range [4,2], then the
responses {4, 3, and 2} are equivalent. In general, there
are 2" ways of partitioning the range [n, 0] into equiva-
lence classes.

Z(3)

Figure 2: Shortest Path Problem

Biases in Inductive Learning Workshop, ML-92, July 4,1992

[4,0]

[4] [3,0]

[4,2] [1,0]

[4,3] [2,1

Target

Partition

[4] [3,2] [1,0]

[4] [3] [2,1] [0]

[4, 3] [2] [1] [0]

[4] [3] [2] [1] [0]

Figure 3: Lattice Represents Partitions over the Range 4 to 0

4.2 EXAMPLE OF REPRESENTATIONAL BIAS

In general, the best mapping between the environment's
language and the automaton's is not known. If we consider
the automaton's specific partition of the range to be an
inherited characteristic, then a partition can be thought of
as an intrinsic representational bias in the automaton's sen-
sors, much in the same vein that a bat's sonar-like sensors
vary in sensitivity depending on the range. This represen-
tational bias determines the structure of the automaton's
STM. The partition given to the automaton remains the
same during its life-span (while it solves the shortest path
problem). The choice of partition is one of the experi-
mental design parameters.

Figure 3 depicts the representation lattice organized with
the most general representation at the top, where all
responses over the range from 4 to 0 are placed in the
same equivalence class (i.e., {4,3,2,1,0} = [4,0]), to the
most specific one at the bottom, where each response is
considered to be unique (i.e., [4] [3] [2] [1] [0]). Thus, the
strength of this representational bias can itself be framed
as a search space covering the most general to the most
specific representation. As we move down the lattice, each

line represents an additional splitting of the range. When
the environment (or the problem) maps the respondents X,
Y, and Z in the graph above into one of the possible parti-
tions, then that partition becomes the target representation,
or more specifically, the Target Partition. For example, if
X maps to [4], Y maps to [3,2], and Z maps to [1,0], then
the target partition is [4] [3, 2] [1,0]. An automaton that
happens to inherit the target partition has the strongest,
correct representational bias. Other representations, how-
ever, may still permit the CLA to solve the shortest path
problem. Those partitions are also correct representations.
Notice that [4] [3] [2,1] [0] is a correct partition because
there is a unambiguous mapping for each of the environ-
ment's symbols: X maps to [4], Y maps to [3], and Z maps
to [0]. The range [2, 1] is not useful to the automaton
because the range is ambiguous: the target partition maps
Y to [2] and Z to [1]. Combining 2 and 1 together does not
help the CLA, but the combination does not hurt the
automaton either because there are unambiguous map-
pings for the symbols Y and Z. In general, the inherited
partitions which allow the automaton to only converge to
sub-optimal solutions, or to not converge at all, are incor-
rect representations.

Biases in Inductive Learning Workshop, ML-92, July 4,1992

43 EXAMPLE OF PROCEDURAL BIAS

At the end of each stage, the environment informs the
automaton of the duration of its selected path through the
network. The automaton's compensation function, which
is defined internally to the automaton, transforms the envi-
ronment's score, £, using an exponential function so that
shorter durations receive a large reward and longer dura-
tions receive very little reward? Thus the initial scaling of
the reward is

/(£) =expkx\ (Eqn5)

where k is some small constant.

The collection entropy is also included in the compensa-
tion function. The collection entropy acts as a progressive
reinforcement mechanism that effective rewards the
automaton more during early learning experiences and less
later on as information at decision points becomes more
certain. As a result, the use of the collection entropy forces
the automaton to examine more difficult-to-reach, yet
unexplored, parts of the search space, even though a near-
optimal solution may be easier to locate. Scott and Marko-
vitch's DIDO system also use an entropy measure to
decide what spaces to investigate (Scott and Markovitch,
1989). However, the CLA's measure incorporates a trans-
formation of the environment's evaluation in order to max-
imize the reward of an experience.
Given a compensation factor, A, for adjusting the rate of
change of the STM probabilities, the compensation, c, is

c= (A) (1.0-//,)/(£). (Eqn6)

The compensation factor is the procedural bias parameter
modified in the experiments. All probabilities along the
path (decision sequence) are increased in proportion to
their current values during the update of the STM. In the
experiment discussed in the results section, different levels
of the compensation factor are examined in order to study
the effect of applying different strengths of a procedural
bias. By increasing or decreasing A, the probabilities in
the STM become organized more or less quickly. These
transitional probabilities in turn affect the organization of
the credibility space of the hypotheses, where a trial
hypothesis is considered to be a particular sequence of
stimulus-response pairs. With a stronger procedural bias,
the entropy of the credibility space decreases faster. How-
ever, too fast a rate of decrease can cause the procedural
bias to be so strong that it is incorrect In other words, too
strong a a compensation factor may lead to a sub-optimal
solution.

7 This compensation function is similar to a reward-inaction policy,
where desirable behaviors are rewarded and non-desirable behaviors
receive no reward instead of being penalized.

4.4 DESIGN
In this study, we examine the 16 partitions discussed
above in combination with 50 levels of compensation fac-
tor, ranging from 0.01 to 0.50. Each combination of parti-
tion and compensation factor level is repeated 20 times in
order to obtain average performance values.

Two criteria must be satisfied to reach convergence: (1)
the fraction of runs over the last 200 stages having the
optimal solution must be greater than or equal to 0.99, and
(2) the difference in the collection entropy between stages
over the 200 stages is less than some small value epsilon
(e.g., epsilon = 0.0005).
After achieving convergence, statistics are obtained over a
window of an additional 50 stages. Two performance mea-
surements are taken: (1) the number of stages required to
reach convergence (i.e., the last stage of the window), and
(2) the time-average of the exponentially transformed
score /(£) (see Eqn 5). The automaton is permitted to run
up to 15,000 stages when there is no convergence.

RESULTS

5.1 MEASURING THE CLA'S OVERALL
PERFORMANCE (UTILITY)

Figure 4 illustrates the change in the collection entropy
from stage to stage for three runs using selected levels of
compensation factor: 0.05, 0.14, and 0.50. The collection
entropy fluctuates as the automaton tests different trial
hypotheses at each sage. Eventually, as the probability of
selecting one solution becomes more certain, the entropy
dramatically decreases and the fluctuations lessen. (If
there were more than one solution, the change in the fluc-
tuation would remain constant). As the level of compensa-
tion becomes larger, the number of stages required to
reduce the entropy becomes smaller.

The top graph in Figure 5 summarizes the essence of the
information in Figure 4. Figure 5 shows the number of
stages required for the five correct partitions (i.e., [4] [3,2]
[1,0]; [4] [3] [2,1] [0]; [4,3] [2] [1, 0]; [4] [3] [2] [1,0],
and [4] [3] [2] [1] [0]) for each level of compensation fac-
tor over an average of 20 runs for each combination. The
target partition's line is dotted; each point has a vertical
line indicating plus and minus one standard deviation
about the mean. An analysis of variance and accompany-
ing t-tests indicate that there is no significant difference
among the correct representations most of the time.

The bottom graph in Figure 5 shows the convergence val-
ues of the different partitions for each level of compensa-
tion factor. These convergence values have been
normalized so that the best obtainable performance is one,
and the worst obtainable one is zero. The strongest, incor-

Biases in Inductive Learning Workshop, ML-92, July 4,1992

COLLECTION ENTROPY OVER THE STAGES

ENTROPY

1000
STAGE NUMBER

For Target Partition Using Compensation Factor = 0.05

ENTROPY

1000 500
STAGE NUMBER

For Target Partition Using Compensation Factor = 0.14

ENTROPY

i 1 1 r
100 200 300 400

STAGE NUMBER
For Target Partition Using Compensation Factor = 0.50

Figure 4: Example Runs Showing Change in Collection Entropy Over Stages

Biases in Inductive Learning Workshop, ML-92, July 4,1992 10

STAGES FOR CONVERGENCE
Correct Partitions Only

0.05 0.1 0.15 0.2 0.25 0.3 0.35
COMPENSATION FACTOR

Std Dev for Target Partition Indicated

0.4

CONVERGENCE
VALUES

CONVERGENCE VALUES
All Partitions

0.05 0.1
i r

0.15 0.2 0.25 0.3 0.35
COMPENSATION FACTOR

Std Dev for Target Partition Indicated

0.4 0.45

Figure 5: Stages for Convergence and Convergence Values at Different Levels of Compensation Factor

Biases in Inductive Learning Workshop, ML-92, July 4, 1992 11

rect partition, [4, 0], lies along the compensation factor
axis at a zero normalized convergence value. The top five
lines correspond to the correct representations; the remain-
ing, more spread out, lines are incorrect partitions. The
dotted line indicates the target partition; with the vertical
lines indicate plus and minus one standard deviation about
each plotted point. An analysis of variance and accompa-
nying t-tests indicate that there are no significant differ-
ences among the correct representations. Notice that the
overall convergence values decrease for the correct parti-
tions with a high level of compensation factor (e.g., 0.50).
Even though it takes fewer stages to reach convergence
(around 500), the procedural bias is so strong that some of
the runs are converging suboptimally, thus bringing down
the average convergence values.

6 CONCLUSION

Normally, we would expect that in the top graph of Figure
5 the correct representations would vary in their number of
stages for convergence, depending on the strength of the
representation. For example, the target partition, being the
strongest, correct partition, should have a slightly faster
rate of convergence that is significant when compared to
the other correct partitions. In this problem, there is not a
significant difference between the representations most of
the time. On the other hand, we would not expect the con-
vergence values in the bottom graph of Figure 5 to be sig-
nificantly different for the correct partitions, since by
definition of being correct, all of these partitions should
allow the automaton to convergence to the optimal solu-
tion.
In the bottom graph of Figure 5, the incorrect partitions,
which generally converge to sixty percent or less of the
optimal convergence value, also exhibit tremendous vari-
ance in their values (this variance is not displayed in the
graph). As a result, it is difficult to discriminate among the
incorrect partitions, as we might expect to do, based on
their normalized convergence values. Incorrect partitions
rarely permit the automaton to converge to even a sub-
optimal solution. For incorrect partitions, the convergence
values are primarily the result of averaging the last fifty
stages over 15,000 stage runs.

In summary, correct partitions could not be discriminated
on the basis of the number of stages required for conver-
gence. Neither could incorrect partitions be discriminated
based on their convergence values. One of the possible
reasons for this result is that the example problem uses dif-
ferent symbols for the same paths through the network
(i.e., word similes). The problem does not show the effect
of combining different paths giving the same performance
into groups. It may be that the use of similes does not
degrade performance. Future research needs to address

different senses of what is meant by combining terms into
higher level ones.
Another problem that needs to be explored is the definition
of convergence within the CLA. It may be that the current
definition of convergence inherently yields results having
high variance. A different definition of convergence may
permit the automaton to consistently converge by same
number of stages (or close to the same) when using the
same combination of parameters.

This paper reviews the ideas of inductive learning biases
in the context of an example RLM called a CLA. For pur-
poses of illustration, the paper uses simple shortest path
problem. In particular, the experimental work examines
the performance of the automaton for various combina-
tions of strengths in representational and procedural bias.
The representational bias is the partitioning of the
response range used within the STM of the CLA; the pro-
cedural bias is the compensation factor which determines
the amount of increase in the probabilities within the
STM. The work also introduces the use of entropy as a
measure of bias strength, with particular emphasis on the
strength of the procedural bias.

The work demonstrates some of the problem of discover-
ing empirical measures of bias strength in an example
RLM. Other tests cases need to be explored in order to dis-
cover when stronger representations can be ascertained
empirically through performance measures.

Acknowledgments
I would like to thank Diana Gordon for her insights on
inductive bias.

References
Peter Bock (1992). The Emergence of Artificial Cognition:
an Introduction to Collective Learning, (Forthcoming),
Elsevier.

Kenneth A. De Jong (1975). An Analysis of the Behavior
of a Class of Genetic Adaptive Systems. Doctoral Disserta-
tion, Univ. of Michigan.

Diana F. Gordon (1990). Active Bias Adjustment for Incre-
mental, Supervised Concept Learning, Doctoral Disserta-
tion, University of Maryland, University Microfilms Order
No.ADG
John J. Grefenstette (1988). "Credit Assignment in Rule
Discovery Systems based on Genetic Algorithms,"
Machine Learning, Vol.3, No.(2/3), pp. 225-245, (1988).

David Haussler (1987). Bias, Version Spaces and Valiant's
Learning Framework. Proceedings of the Fourth Interna-
tional Workshop on Machine Learning, June 22-25, Uni-
versity of California, Irvine, Los Altos, CA: Morgan
Kaufmann.

Biases in Inductive Learning Workshop, ML-92, July 4, 1992 12

David Haussler (1988). Quantifying Inductive Bias: AI
Learning Algorithms and Valiant's Learning Framework.
Artificial Intelligence, 36, pp. 177-221.

John Holland (1975). Adaptation in Natural and Artificial
Systems. Ann Arbor, MI: The University of Michigan
Press.
Tom M. Mitchell (1977). Version Spaces: A Candidate
Elimination Approach to Rule Learning. Fifth Interna-
tional Joint Conference on Artificial Intelligence, Vol. 1,
pp. 305-310, March.

Tom M. Mitchell (1980). The Need for Biases in Learning
Generalizations. Technical Report CBM-TR-117, Depart-
ment of Computer Science, Rutgers University, New
Brunswick, NJ (1980).
Kumpati Narendra and M.A.L. Thathachar. (1989). Learn-
ing Automata: An Introduction. Englewood, NJ: Prentice-
Hall.

Larry Rendell (1986). A General Framework for Induction
and a Study of Selective Induction. Machine Learning,
Vol. 1, pp. 177-226.

David E. Rumelhart (1986). Parallel Distributed Process-
ing. (Eds: David E. Rumelhart and James L McClelland).
Vols 1 and 2, MIT Press.

Paul D. Scott and Shaul Markovitch (1989). Learning
Novel Domains Through Curiosity and Conjecture. Inter-
national Joint Conference on Artificial Intelligence, Vol. 1,
pp. 669 - 674, Palo Alto, CA: Morgan Kaufmann.

C. E. Shannon (1948). A Mathematical Theory of Com-
munication. Bell System Technical Journal, Vol. XXVII,
July, pp. 379 - 423.
William M. Spears and Diana F. Gordon (1992). Is Consis-
tency Harmful? (In the proceedings of the Bias in Induc-
tive Learning Workshop, ML-92.)

Richard S. Sutton (1984). Temporal Credit Assignment in
Reinforcement Learning. Dissertation, University of Mas-
sachusetts, Amherst, MA.

Leslie Valiant (1984). A Theory of the Learnable. Commu-
nications of the ACM, Vol. 27, No. 11, pp. 1134-1142.

Paul E. Utgoff (1986). "Shift of Bias for Inductive Con-
cept Learning," Machine Learning: An Artificial Intelli-
gence Approach, Vol. II, Chapter 5, pp. 107-148, (ed.
Michalski, et al), Los Altos, CA: Morgan Kaufmann.

Satosi Watanabe (1960). Information-Theoretical Aspects
of Inductive and Deductive Inference. IBM Journal, April,
pp. 208-231.

Satosi Watanabe (1971). Pattern Recognition as Informa-
tion Compression. Proceedings of the International Con-
ference on Frontiers of Pattern Recognition, January 18-
20, Academic Press.

Satosi Watanabe (1975). Creative Learning and Propensity
Automaton. IEEE Transactions on Systems, Man, and
Cybernetics, Vol. SMC-5, No. 6, November, pp. 603-609.

C J. C. H. Watkins (1989). Learning with Delayed
Rewards, Ph. D. Thesis, Cambridge University Psychol-
ogy Department.

Steven D. Whitehead and Dana H. Ballard (1990). Active
Perception and Reinforcement Learning. In Machine
Learning: Proceedings of the Seventh International Con-
ference (1990), pp 179-188, (Eds. Porter, Bruce and
Mooney, Raymond). San Mateo, CA: Morgan Kaufmann.

Biases in Inductive Learning Workshop, ML-92, July 4,1992 13

